Ethnic Network Effects in the Spanish Immigration Boom

Nina Heuer Marcel Smolka

University of Tübingen

13th Annual Conference of the ETSG
Copenhagen Business School
University of Copenhagen

September 8-10, 2011
Motivation

- Large and persistent cross-country wage differences
- Level of international migration flows low relative to that of trade and capital flows

→ Substantial bilateral moving costs
→ Ethnic networks provide newcomers with social capital that alleviates the cost of finding jobs and housing; Munshi (2003, QJE)
→ Potential for migration to develop momentum? Clustering of co-ethnic migrants in space?
This Paper

- Role of ethnic networks in shaping
 (i) the aggregate dynamics (country margin) and
 (ii) the spatial distribution (province margin)
 of immigration in Spain

- Theoretical approach combines
 (i) dynamic migration model akin to Carrington et al. (1996) and
 Chau (1997) with
 (ii) random utility framework à la McFadden (1974)

- Econometric methods to explore
 (i) global network effect (country margin)
 (ii) local network effect (province margin)

- Counterfactual analysis through simulation
Why Spain?

- Among the world’s strongest **migrant magnets**
 - In 2010, stock of foreign-born individuals was up 5.3 million people from 1995
 - Foreign-born share among the total population has risen from 2.6% to 13.8% over that same period
 - Diverse ethnic background (more than 100 sources)
- “Liberal” immigration policy
- Detailed **micro- and macro-level data** freely available at the website of the Spanish Instituto Nacional de Estadística (INE); data include immigrants **with and without valid residence permits**
Other Papers

- **Sociological network theory ("cumulative causation"); economic theory of labor migration**
 - Myrdal (1957), Massey et al. (1993); Carrington et al. (1996, AER), Chau (1997, JRS)

- **Empirical literature on determinants of international migration (macro-level), often gravity-type for migration into OECD**

- **Empirical literature on migrants’ location choices in destination country (often U.S.)**
Migration Data from INE

- Yearly head count of legal and illegal inflows of all foreign nationals, detailed by Spanish provinces and nationality, 1997-2009
- Yearly head count of migrant communities in each of 52 Spanish provinces for 113 nationalities, 1997-2009
- Definition of migrant based on *nationality* (and *country of birth*)
- Other Spanish data
 - GDP per capita (INE)
 - Employment rates (INE)
 - Bilateral trade volumes
 (from DataComex Statistics on Spanish Foreign Trade)
 - Bilateral FDI flows
 (from DataInvex Statistics on Foreign Investments in Spain)
- Origin country data from various sources
Migration Stocks and Inflows, 1997-2009

Romanians

Moroccans

Ecuadorians

Colombians

Britons

Bolivians
Concentration Curves for Foreign Nationals, 1999 and 2009
Cross-Country Variation: Initial Stocks and Subsequent Flows

Emigration Rate (1997-2009)

Log Migrant Stock 1997
Within-Variation: Δ Stocks and Δ Flows
Within-Variation: Δ Spanish GDP Per Capita and Δ Flows
Within-Variation: Δ Spanish Employment and Δ Flows

Heuer, Smolka (University of Tübingen)
Spanish Migration Networks
September 8-10, 2011
Basic Idea

- Individual decision making embedded in a periodic two-stage framework
 - **First stage:** binary choice between migrating to Spain or staying at home; see Carrington et al. (1996) and Chau (1997)
 - **Second stage:** discrete choice of residential destination in Spain, conditional on migrating; see McFadden (1974)
 → Hierarchical information-processing (supported by evidence; see Pellegrini & Fotheringham, 2002)
First stage

- An individual’s expected net benefit in lifetime utility from migrating from country i to Spain at time t is

$$\delta E(V(w_t, e_t, c_{its})) - \delta E(V^*(w^*_it, e^*_it)),$$

where w’s are wages, e’s employment rates, and $c_{its} \equiv c(M_{it-1}; s)$ with $s \in (0, 1)$ and M_{it-1} being the stock of migrants from i in Spain at $t - 1$

- We assume

$$\frac{\partial E(V(.))}{\partial \ln w} = \alpha > 0, \quad \frac{\partial E(V(.))}{\partial \ln e} = \beta > 0, \quad \frac{\partial E(V(.))}{\partial c} = \gamma < 0,$$

and similarly for the home country

- Assuming $\partial c/\partial s = 1$, we find a unique $\tilde{s}_{it} \equiv s(w_t, e_t, w^*_it, e^*_it, M_{it-1})$ for which all individuals with $s_{it} < \tilde{s}_{it}$ expect to be strictly better off through migration
First stage (cont’d)

Letting \(F(\tilde{s}_{it}) = \tilde{s}_{it} \) and \(\partial c/\partial \ln M = \theta < 0 \), we can use the “marginal migrant condition” to arrive at

\[
\frac{M_{it}}{N_{i}^{*}} = -\theta \ln \tilde{M}_{it-1} - \frac{\alpha}{\gamma} \ln w_{t} + \frac{\alpha^{*}}{\gamma} \ln w_{it}^{*} - \frac{\beta}{\gamma} \ln e_{t} + \frac{\beta^{*}}{\gamma} \ln e_{it}^{*}
\]

→ \(M_{it} \) will be the cumulative gross inflow of men aged 16-64 from country \(i \) at time \(t \)

→ Cumulative flow model, estimated with source fixed effects and time fixed effects; see also Brücker et al. (2004) and Brücker & Schröder (2011)

→ No dynamic model since \(\tilde{M}_{it-1} \) will be the observed stock of all immigrants from country \(i \) at time \(t - 1 \)

→ Augmented by bilateral trade and FDI flows
Letting $F(\tilde{s}_t) = \tilde{s}_t$ and $\partial c/\partial \ln M = \theta < 0$, we can use the "marginal migrant condition" to arrive at

$$\frac{M_{it}}{N^*} = -\theta \ln \tilde{M}_{it-1} - \frac{\alpha}{\gamma} \ln w_t + \frac{\alpha^*}{\gamma} \ln w^*_it - \frac{\beta}{\gamma} \ln e_t + \frac{\beta^*}{\gamma} \ln e^*_it$$

Parameter estimates (log-log model)

- $\theta \approx -0.5^{***}$
- $\frac{\alpha}{\gamma} \approx -3.4^{***}$
- $\frac{\alpha^*}{\gamma} \approx -0.6^*$
- $\frac{\beta}{\gamma} \approx -11.6^{***}$
- $\frac{\beta^*}{\gamma} \approx -3.1^{***}$
Second stage

- In Spain, choice of residential destinations indexed $j = 1, \ldots, J$. Expected lifetime utility from migrating from i to j is

$$E(U_{ijt}) = \delta E(V(w_{jt}, e_{jt}, c_{ijt})) + \varepsilon_j,$$

(3)

where all immigrants draw their personal taste components ε_j from iid type I extreme value distributions. Hence,

$$\Pr \left(E(U_{ijt}) = \max_k E(U_{ikt}) \right) = \frac{m_{ijt}}{m_{it}} = \frac{\exp(\delta E(V_{ijt}))}{\sum_{k=1}^{J} \exp(\delta E(V_{ikt}))},$$

(4)

- Log-linearizing and rearranging yields

$$\ln(m_{ijt}) = \delta E(V_{ijt}) - \ln \left(\sum_{k=1}^{J} \exp(\delta E(V_{ikt})) \right) + \ln m_{it}.$$

(5)
Second stage (cont’d)

- Applying a variant of the within-transformation to eliminate it-specific effects results in

$$\ln \left(\frac{m_{ijt}}{m_{i\ell t}} \right) = \delta \theta \gamma \ln \left(\frac{\tilde{M}_{ijt-1}}{\tilde{M}_{i\ell t-1}} \right) + \delta \alpha \ln \left(\frac{w_{jt}}{w_{\ell t}} \right) + \delta \beta \ln \left(\frac{e_{jt}}{e_{\ell t}} \right)$$

$\rightarrow m_{ijt}$ will be the **gross inflow** of men aged 16-64 from country i to province j at time t, and similarly for reference province ℓ (Madrid)

\rightarrow Estimated with **source-and-destination** fixed effects, **destination-and-time** fixed effects, and **source-and-region-and-time** fixed effects (computationally burdensome)

\rightarrow Augmented by bilateral **trade flows** (province-level) and **FDI flows** (regional-level)
Second stage (cont’d)

- Applying a variant of the within-transformation to eliminate \(it \)-specific effects results in

\[
\ln \left(\frac{m_{ijt}}{m_{i\ell t}} \right) = \delta \theta \gamma \ln \left(\frac{\tilde{M}_{ijt-1}}{\tilde{M}_{i\ell t-1}} \right) + \delta \alpha \ln \left(\frac{w_{jt}}{w_{\ell t}} \right) + \delta \beta \ln \left(\frac{e_{jt}}{e_{\ell t}} \right)
\]

- Parameter estimates
 - \(\delta \theta \gamma \approx 0.2^{***} \)
 - \(\delta \alpha \approx 1.2^{***} \)
 - \(\delta \beta \approx 2.2^{***} \)
Work in Progress

- Multilateral resistance (Bertoli & Fernández-Huertas Moraga, 2011)
- Cross-country differences in network effects
- Simulation
 - Combine global and local network effect to simulate dynamics at the country and at the province margin of migration
 - Account for wage and employment effects of migration
Ethnic Network Effects in the Spanish Immigration Boom

Nina Heuer Marcel Smolka

University of Tübingen

13th Annual Conference of the ETSG
Copenhagen Business School
University of Copenhagen

September 8-10, 2011